

Be	едение	4
1	Требования безопасности	4
2	Список сокращений	5
3	Назначение	6
4	Технические характеристики	7
5	Устройство и принцип работы	. 11
6	Конструкция	. 14
7	Подготовка к работе, установка и порядок подключения анализатора	. 16
7	.1 Монтаж и демонтаж	. 16
7	.2 Порядок подключения анализатора	. 16
	7.2.1 Подключение входного сигнала	. 16
	7.2.2 Подключение охранного шлейфа	. 17
	7.2.3 Подключение к сети ЛВС	. 17
	7.2.4 Подключение питания	. 17
8	Режимы работы	. 19
9	Настройка анализатора через web-интерфейс	. 20
9	.1 Настройки сервера ViewRSA	. 22
9	.2 Сохранение настроек и перезагрузка анализатора	. 22
9	.3 Возврат к заводским настройкам	. 23
10	Измерения	. 24
11	Обновление ПО	. 24
1	1.1 Автоматическое обновление ПО	. 24
1	1.2 Обновление ПО пользователем	. 25
1	1.3 Принудительный вход в режим обновления ПО	. 27
12	Работа с анализатором в программе ViewRSA	. 27
1	2.1 Общие указания	. 27
1	2.2 Установка программного обеспечения	. 28

СОДЕРЖАНИЕ

13 Работа с анализатором по SNMP протоколу	28
13.1 Общие указания	28
13.2 Описание анализатора в иерархии MIB-2	29
14 Маркировка	
15 Техническое обслуживание	30
16 Обнаружение неисправностей и текущий ремонт	
17 Хранение	
18 Транспортирование	31
Приложение А (обязательное) Описание МІВ-2 иерархии	32
Группа объектов «identification»	32
Группа объектов «control»	33
Группа объектов «measurements»	40
Таблица канального плана	40
Уведомления	47
Приложение Б (обязательное) Возможные неисправности и способы их	
устранения	

Введение

Благодарим Вас за выбор изделия ООО «ПЛАНАР»!

Настоящий документ предназначен для ознакомления с устройством и принципом работы, основными правилами эксплуатации, обслуживания и транспортирования Анализатора ТВ сигналов с удаленным доступом ITM-20T2 (далее - Анализатор).

Прежде чем пользоваться анализатором, внимательно изучите настоящее руководство!

1 Требования безопасности

К эксплуатации и техническому обслуживанию анализатора должны допускаться лица, изучившие паспорт и настоящее руководство по эксплуатации используемого анализатора, а также прошедшие инструктаж по технике безопасности.

ВНИМАНИЕ! Запрещается производить коммутацию кабелей без отключения напряжения питания анализатора!

2 Список сокращений

В документе приняты следующие сокращения:

- АЦП аналого-цифровой преобразователь;
- ВЧ высокочастотный;
- ПЧ промежуточная частота;
- ПК персональный компьютер;
- ПО программное обеспечение;
- ЛВС локальная вычислительная сеть;
- ОС операционная система;
- ТВ телевизионный;
- BER Bit Error Ratio (частота появления ошибочных битов);
- DVB-C Digital Video Broadcasting-Cable (цифровое кабельное телевизионное вещание);
- DVB-T/T2 Digital Video Broadcasting-Terrestrial (наземное цифровое телевизионное вещание)
- С/N отношение уровня несущей видео к шуму в канале распределения;
- MER Modulation Error Ratio (коэффициент ошибок модуляции);
- MIB Management Information Base (база управляющей информации);
- MPEG-TS транспортный поток MPEG (протокол передачи аудио и видео данных);
- PoE Power Over Ethernet (технология передачи питания по ЛВС);
- QAM Quadrature Amplitude Modulation (квадратурная амплитудная модуляция);
- QPSK Quadrature Phese-Shift Keying (квадратурная фазовая модуляция);
- SNMP Simple Network Management Protocol (простой протокол управления вычислительными сетями);
- V/А отношение уровней несущих видео и звука.

3 Назначение

Анализатор предназначен для измерения и автоматического контроля параметров сигналов аналогового и цифрового телевидения с передачей результатов по ЛВС.

Анализатор устанавливается в узлах кабельной сети для непрерывного, автоматического контроля параметров сигнала.

Анализатор предназначен для круглосуточной работы в закрытом помещении.

Комплект поставки анализатора приведен в таблице 1.

Таблица 1

	Обозначение	Количество, шт.	
Наименование		ITM-20T2-R	ITM-20T2-R- POE
Анализатор ТВ сигналов с удаленным доступом ITM-20T2	ITM-20T2	1	1
Блок питания	12 B/1,2 A	1	_
Краткая инструкция по работе	-	1	1
Паспорт	ПС 26.51.44-174-21477812-2021	1	1
Руководство по эксплуатации 1	PƏ 26.51.44-174-21477812-2021	_	_

Варианты исполнений анализатора приведены в таблице 2.

Таблица 2

Исполнение	Вход	Особенности электропитания
ITM-20T2-R	радиочастотный (РЧ)	внешний сетевой адаптер
ITM-20T2-R-POE	радиочастотный (РЧ)	внешний сетевой адаптер или питание по сети Ethernet

¹ Руководство по эксплуатации не входит в комплект поставки. Предоставлено в свободном доступе на сайте предприятия-изготовителя <u>http://www.planarchel.ru</u>.

4 Технические характеристики

Таблица З

Параметр	Значение				
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИ	ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ				
Диапазон рабочих частот, МГц	от 44 до 1006				
Шаг перестройки по частоте, кГц	125				
Диапазон измеряемых уровней, дБмкВ	от 30 до 90				
Разрешение по измеряемому уровню, дБ	0,1				
Пределы допускаемой основной погрешности измерения уровня, дБ	±2,0				
DVB-C					
Параметры демодулятора: тип модуляции символьная скорость, Мсимв/с	QAM64, 128, 256 от 5,000 до 7,000				
Диапазон измерения MER, дБ: для QAM64 для QAM256	от 22 до 40 от 28 до 40				
Разрешение по измерению MER, дБ	0,1				
Пределы допускаемой основной погрешности измерения MER (при фактическом уровне напряжения цифрового канала не ниже 60 дБмкВ), дБ	±2,0				
Диапазон измерения BER: BER до декодера Рида-Соломона BER после декодера Рида-Соломона DVB-T	от 5·10 ⁻³ до 1·10 ⁻⁸ от 1·10 ⁻⁴ до 1·10 ⁻⁸				
 Тип модуляции	QPSK, QAM16, QAM64				
Диапазон измерения MER, дБ	от 14 до 32				
Пределы допускаемой основной погрешности измерения MER, дБ	±2,0				

Параметр	Значение		
Разрешение по измерению MER, дБ	0,1		
Диапазон измерения BER: BER до декодера Витерби	от 1·10 ⁻² до 1·10 ⁻⁷		
ВЕК после декодера Витерби	от 1·10 ⁻⁴ до 1·10 ⁻⁸		
DVB-T2			
Стандарт DVB-T2	1.3.1		
Диапазон измерения MER, дБ: для QAM64 для QPSK, QAM16, QAM256	от 22 до 35 от 22 до 32		
Пределы допускаемой основной погрешности измерения MER, дБ	±2,0		
Разрешение по измерению MER, дБ	0,1		
Диапазон измерения BER: BER до декодера Витерби BER после декодера Витерби	от 1·10 ⁻² до 1·10 ⁻⁷ от 1·10 ⁻⁴ до 1·10 ⁻⁸		
ХАРАКТЕРИСТИКИ РАДИОЧАСТОТНОГО ВХОДА			
Тип входного радиочастотного разъема	F-розетка		
Входное сопротивление в диапазоне рабочих частот, Ом	75		
Допустимое суммарное значение переменного напряжения на радиочастотном входе в диапазоне рабочих частот, В	1,5		
Допустимое значение переменного и постоянного напряжения на радиочастотном входе в диапазоне частот ниже 100 Гц, В	60		
ОБЩИЕ ХАРАКТЕРИСТИКИ			
Время установления рабочего режима, мин, не более	5		
Интерфейс управления	Ethernet, RJ-45 / 100BASE-TX		
Параметры ЛВС	IPv4 / DHCP		
Протоколы управления	HTTP, SNMPv1		

Параметр	Значение			
ХАРАКТЕРИСТИКИ ПИТАНИЯ				
Тип разъема питания	Штекер 2.1 × 5.5 (DJK-02A),			
Варианты питания:				
 от внешнего источника постоянного тока: 				
напряжение источника, В	от 8 до 24			
пульсации, В, не более	0,5			
 по Ethernet (PoE), IEEE 802.3af (для исполнения ITM- 	от 37 до 57			
20T2-R-POE)				
Потребляемая мощность, Вт, не более	5			
ХАРАКТЕРИСТИКИ НАДЕЖНОСТИ	1			
Наработка на отказ, ч, не менее	10000			
Средний срок службы прибора, лет, не менее	5			
МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ				
Конструктивное исполнение прибора	6M, DIN 43880			
Способ монтажа	на DIN-рейку EN 60715			
Габаритные размеры, мм, не более:				
прибора	106 x 103 x 57			
грузового места	158 x 113 x 93			
Масса, кг, не более:				
прибора	0,2			
грузового места	0,3			
НОРМАЛЬНЫЕ УСЛОВИЯ ЭКСПЛУАТА	ции			
Температура окружающего воздуха, °С	23 ± 5			
Относительная влажность воздуха, %	55 ± 25			
Атмосферное давление, кПа	от 84 до 106			

Параметр	Значение		
РАБОЧИЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ			
Температура окружающего воздуха, °С	от 0 до +50		
Относительная влажность воздуха (при температуре +25 °C), %, не более	80		
Атмосферное давление, кПа	от 84 до 106		

5 Устройство и принцип работы

Анализатор представляет собой приемник сигналов стандарта DVB-C/T/T2 с демодуляцией сигнала до транспортного потока MPEG-TS. Входной тюнер является приемником с прямым преобразованием частоты. Коэффициент ошибок модуляции (MER) измеряется в процессе демодуляции QAM сигнала. Частота ошибочных битов (BER) в цифровом потоке измеряется путем анализа работы декодеров. Измерение уровня напряжения радиосигнала канала с цифровой модуляцией осуществляется с помощью встроенного в тюнер измерителя. Измерение уровня напряжения радиосигнала канала с осуществляется с помощью встроенного в тюнер измерителя.

В соответствии с установленной ТВ системой и канальным планом анализатор осуществляет непрерывное измерение параметров каналов. Результатом измерения каналов с цифровой модуляцией стандарта DVB-C/T/T2 являются:

- значения уровня напряжения радиосигнала (мощности канала);
- MER;
- BER.

Результатом измерения каналов с аналоговой модуляцией являются:

- значения уровня напряжения радиосигнала;
- отношения уровней несущих видео и звука (V/A);
- отношения уровней несущих видео к шуму в канале распределения (C/N).

Структурная схема анализатора приведена на рисунке 1.

Рисунок 1 – Структурная схема

Измеренные значения параметров сохраняются в памяти анализатора вместе с временной меткой окончания измерения для каждого канала. Результаты измерений считываются по протоколу SNMPv1, отображаются в web-интерфейсе или передаются на удаленный компьютер с установленной программой ViewRSA. После передачи измерений на удаленный компьютер с установленной программой ViewRSA измерения сохраняются в базе данных программы ViewRSA.

Входной сигнал поступает на тюнер (Т), преобразующий сигнал в сигнал промежуточной частоты (ПЧ). В режиме измерения канала с цифровой модуляцией сигнал ПЧ от тюнера (Т) подается на демодулятор (Д) через коммутатор (К). Демодулятор (Д) осуществляет демодулирование и измерение параметров сигнала.

В режиме измерения канала с аналоговой модуляцией сигнал ПЧ от тюнера (Т) подается на фильтр 10,7 МГц (ФПЧ) через коммутатор (К). После чего поступает на усилитель с логарифмической амплитудной характеристикой (УЛАХ), где осуществляется логарифмирование и детектирование радиосигнала. Далее с помощью аналогово-цифрового преобразователя (АЦП) происходит измерение уровня напряжения радиосигнала. Устройство управления (УУ) осуществляет пиковое или среднеквадратичное детектирование полученных

с АЦП данных с последующей корректировкой с учетом калибровочной таблицы, хранящейся в энергонезависимой памяти (ЭНП) анализатора.

Устройство управления (УУ) с помощью интерфейсов управления (ИУ) обеспечивает работу прибора с программой ViewRSA, обмен по протоколу SNMPv1 и управление с помощью webинтерфейса.

В энергонезависимой памяти (ЭНП) хранятся калибровочные коэффициенты, определенные на предприятии-изготовителе, ТВ система, канальный план, лимитный план и служебная информация.

Блок питания (БП) формирует необходимые питающие напряжения от внешнего источника питания или блока питания РОЕ (БП РОЕ, в исполнении ITM-20T2-R-POE).

6 Конструкция

Конструктивно анализатор выполнен в пластиковом разборном корпусе типоразмера 6M, DIN 43880 с установленными внутри элементами поверхностного и объемного монтажа.

Внешний вид анализатора показан на рисунке 2.

Вид снизу

Рисунок 2 – Внешний вид анализатора

Таблица 4

Номер на	Описание	Назначение
рисунке 2		
1	Клеммы питания «+» / «-»	Подключение внешнего питания.
2	Разъем питания (штекер 2.1 × 5.5 (DJK-02A), центральный «+»)	
3	Индикатор напряжения питания «ПИТАНИЕ»	Индикация включения анализатора.
4	Индикатор режима работы «СТАТУС»	Индикация режима работы анализатора.

Номер на	Описание	Назначение
рисунке 2		
5	Клипса	Крепление на DIN-рейке
6	Кнопка сброса настроек / входа в режим обновления «СБРОС»	Установка настроек прибора в значение по умолчанию. Принудительный вход в режим обновления ПО прибора.
7	Клеммы подключения охранного шлейфа «ОХР. ВХОД»	Подключения охранного шлейфа.
8	Разъем подключения к ЛВС «ETHERNET» (RJ-45)	Подключение анализатора к ЛВС. Для исполнения ITM-20T2-R-POE может использоваться для питания анализатора (PoE).
9	Входной разъем «ВХОД» (радиочастотный «75 Ом, F-розетка»)	Подача входного сигнала.
10	Этикетка	Маркировка анализатора (серийный номер и МАС-адрес).

7 Подготовка к работе, установка и порядок подключения анализатора

Перед установкой необходимо распаковать анализатор и убедиться в отсутствие внешних повреждений, а также сверить комплектность анализатора с паспортом из комплекта поставки.

Если анализатор находился в климатических условиях, отличных от рабочих, необходимо выдержать его в течение не менее двух часов в нормальных условиях (см. таблицу 3).

Для подготовки анализатора к работе необходимо произвести следующие действия:

- произвести монтаж анализатора на DIN-рейку (п. 7.1);
- подключить входной сигнал (п. 7.2.1);
- подключить анализатор к ЛВС (п. 7.2.3);
- подключить питание (п. 7.2.4);
- настроить анализатор с помощью WEB-интерфейса (п. 9);
- установить связь с анализатором в программе ViewRSA (см. описание на программу)².

ВНИМАНИЕ! Запрещается устанавливать анализатор вне помещений!

7.1 Монтаж и демонтаж

Крепление анализатора осуществлять на DIN-рейку EN 60715.

Монтаж анализатора осуществлять защелкиванием на DIN-рейку.

Демонтаж анализатора:

- оттяните клипсу (поз. 5 на рисунке 2);
- снимите анализатор с DIN-рейки и отпустите клипсу.
- 7.2 Порядок подключения анализатора

7.2.1 Подключение входного сигнала

Подключите кабель с разъемом типа «F»-вилка измеряемой кабельной сети к гнезду «ВХОД» (поз. 9 на рисунке 2).

² В случае работы с программой ViewRSA.

7.2.2 Подключение охранного шлейфа

При необходимости подключите охранный шлейф к клеммам «ОХР. ВХОД» (поз. 7 на рисунке 2). Поддерживаются охранные шлейфы с датчиками с нормально-замкнутыми контактами.

7.2.3 Подключение к сети ЛВС

Подключите кабель Ethernet сети к гнезду «ETHERNET» (поз. 8 на рисунке 2).

7.2.4 Подключение питания

Питание анализатора должно осуществляться от внешнего стабилизированного источника постоянного тока напряжением от 8 до 24 В и мощностью не менее 5 Вт (источник питания в комплект поставки не входит).

Варианты подключения питания анализатора приведены в таблице 5.

Таблица 5

Подключение питания	Позиция на рисунке 2	Действия для подключения
Через разъем внешнего сетевого адаптера.	поз. 2	Подключите источник питания, используя штекер 2.1 x 5.5 мм (DJK-02A), центральный контакт «+».
Через клеммную колодку.	поз. 1	 1 Проложите кабель от источника питания к анализатору. 2 Зачистите и залудите концы проводов кабеля питания. 3 Соедините концы проводов кабеля питания с клеммами питания, соблюдая полярность, указанную на корпусе анализатора. 4 Затяните винты клемм питания отверткой с узким шлицем. ВНИМАНИЕ! Соблюдайте полярность питания, чтобы избежать повреждения анализатора!
РоЕ (для исполнения ITM-20T2-R-POE).	поз. 8	Подключите кабель Ethernet сети к гнезду «ETHERNET». При использовании инжектора питания РоЕ, убедитесь, что к инжектору подключен источник питания напряжением от 37 до 57 В и мощностью не менее 5 Вт.

8 Режимы работы

Анализатор имеет два режима работы:

- рабочий режим;
- режим обновления ПО.

Текущий режим работы отображается индикаторами «СТАТУС» и «ПИТАНИЕ» на передней панели анализатора (таблица 6).

Таблица	6
---------	---

Индикация		Описание
Светодиод «СТАТУС»	Светодиод	
	«ПИТАНИЕ»	
О не светится	• не светится	Питание не подключено.
• красный, светится	зеленый, светится	Не готов (запуск программы или ошибка).
- <mark>).</mark> красный, мигает	зеленый, светится	Режим обновления.
О не светится	зеленый, светится	Рабочий режим.

В рабочем режиме анализатор измеряет параметры телевизионных каналов в соответствии с установленным канальным планом, проверяет их в соответствии с заданным лимитным планом, отправляет данные в систему мониторинга ViewRSA³, обеспечивает работу по протоколу SNMPv1 и настройку с помощью web-интерфейса. Режим устанавливается при включении анализатора. В рабочем режиме индикатор «СТАТУС» не светится.

Режим обновления ПО предназначен для обновления программного обеспечения анализатора. Анализатор переходит в режим обновления:

• по команде пользователя или автоматически, при соответствующих настройках (см. п. 11);

• в случае сбоя ПО.

В режиме обновления ПО индикатор «СТАТУС» мигает красным цветом с частотой 1 раз секунду.

³ В случае работы с программой ViewRSA.

9 Настройка анализатора через web-интерфейс

По умолчанию в анализаторе установлен локальный IP-адрес 192.168.1.10. Для входа на webстраницу анализатора наберите адрес в адресной строке web-браузера. Главная webстраница показана на рисунке 3.

На главной web-странице отображаются различные параметры анализатора, параметры сети, параметры связи с сервером ViewRSA, а также время непрерывной работы анализатора.

Рисунок 3 – Главная web-страница

Для настройки анализатора перейдите на вкладку **Настройки**. Внешний вид вкладки показан на рисунке 4.

ITM-20T2	× +						_	
() 192.168.1.10)/setting_ru.html	90% C	Q , Поиск	☆自	÷	^ 🐠	e 5	≡A
PLANAR ITM-20T2	2 Анализат	тор ТВ сиг	налов с уда	аленн	ым	і дос	гуп	ом
<u>Главная</u>	<u>Измерения</u>	<u>Настройки</u>	<u>Обновление</u>	E	ng	Rus		
Настройки сети	· · · ·							
Использовать DHCP: Г								
IP-адрес: 192 . 168	. 1 . 10							
Маска подсети: 255	. 255 . 255 . 0							
Основной шлюз: 0	. 0 . 0 . 0							
Настройки сервер	pa ViewRSA							
Тип подключения:								
ОПо IP-адресу ОПо имени сервера ⊙ Автоматически								
IP-адрес сервера Viewl	RSA: 0 . 0 .	0.0						
Имя сервера ViewRSA:								
Порт ViewRSA (от 1025 до 65535): 48048								
Сохранить								
Имя контроллиру	уемого узла							
Сохранить								
Возврат к заводси	ким настройкам							
Для возврата к заводси	ким настройкам нажми	те кнопку "Заводские	настройки".					
Заводские настройки	Заводские настройки					.:		

Рисунок 4 – Вкладка Настройки

Для настройки параметров подключения к ЛВС задайте IP-адрес анализатора, маску подсети и основной шлюз.

Если назначением IP-адресов в сети занимается DHCP-сервер, установите флаг **Использовать DHCP**. В этом случае IP-адрес анализатора, маску подсети и основной шлюз не задавать.

При использовании DHCP-сервера сетевое имя анализатора имеет формат:

itm20t2-pswxxxxxxxx,

где pswxxxxxxx – серийный номер анализатора.

Например, анализатор с серийным номером PSW211000010 будет иметь сетевое имя itm20t2-PSW211000010.

9.1 Настройки сервера ViewRSA

Для связи с сервером ViewRSA используются три типа подключения:

- по IP-адресу;
- по имени сервера;
- автоматически.

В случае подключения к серверу ViewRSA по IP-адресу выберите соответствующий тип подключения и задайте IP-адрес сервера и порт ViewRSA. В этом случае IP-адрес сервера ViewRSA не должен изменяться иначе связь с программой ViewRSA будет невозможна.

В случае подключения к серверу ViewRSA по имени сервера выберите соответствующий тип подключения и задайте имя сервера и порт ViewRSA.

В случае подключения к серверу ViewRSA автоматически выберите соответствующий тип подключения. При автоматическом подключении к серверу ViewRSA, сервер ViewRSA передает свой IP-адрес и порт, используя UDP соединение. Если в сети UDP соединения не поддерживаются, выберите другой способ подключения.

9.2 Сохранение настроек и перезагрузка анализатора

Для сохранения настроек нажмите кнопку **Сохранить**. При этом настройки будут сохранены в память анализатора и в web-браузере отобразится web-страница перезагрузки (см. рисунок 5).

Рисунок 5 – web-страница Перезагрузка

Чтобы новые настройки вступили в силу перезагрузите анализатор, для чего нажмите кнопку **Перезагрузка**. На время перезагрузки анализатора в web-браузере отобразится webстраница, показанная на рисунке 6. Анализатор будет недоступен 10 с. После перезагрузки перейдите по ссылке **На главную страницу**.

Рисунок 6

9.3 Возврат к заводским настройкам

Для возврата к заводским настройкам нажмите кнопку **Заводские настройки** на webстранице настройки анализатора (см. рисунок 4). Анализатор установит настройки, заданные на предприятии изготовителе по умолчанию, и отобразит web-страницу перезагрузки (см. рисунок 5).

Чтобы настройки вступили в силу перезагрузите анализатор (см. п. 9.2).

ПРИМЕЧАНИЕ Для сброса настроек нажмите и удерживайте кнопку «СБРОС», пока индикатор «СТАТУС» не загорится красным цветом. Отпустите кнопку «СБРОС» и дождитесь установки рабочего режима (10 с).

Заводские настройки устанавливают локальный IP-адрес анализатора 192.168.1.10, автоматическое соединение с сервером ViewRSA, запрещают автоматическое обновление, а также удаляют имеющийся канальный план.

10 Измерения

Управление измерениями, запись канального и лимитного планов и критериев проверки осуществляется с помощью программы ViewRSA (п. 12) или по SNMPv1 протоколу (п. 12).

11 Обновление ПО

Обновление ПО анализатора может осуществляться автоматически или по команде пользователя.

11.1 Автоматическое обновление ПО

В этом случае анализатор периодически будет переходить в режим обновления ПО и соединяться с сервером предприятия-изготовителя, чтобы устанавливать обновления. Для этого анализатору должен быть открыт доступ в глобальную сеть Internet.

По умолчанию автоматическое обновление анализатора отключено. Чтобы настроить автоматическое обновление зайдите на web-страницу анализатора на вкладку **Обновление** (см. рисунок 7).

В разделе **Настройки автоматического обновления** установите период автоматического обновления от 1 до 365 дней. Для отключения автоматического обновления установите период автоматического обновления равным 0 дней. Для сохранения настроек нажмите кнопку **Сохранить**. При этом настройки будут сохранены в память анализатора и в web-браузере отобразится web-страница перезагрузки, показанная на рисунке 5.

Чтобы настройки вступили в силу необходимо перезагрузить анализатор (см. п 9.2).

ITM-20T2	× +						-	<u> </u>
() 192.168.1.10)/update_ru.html	90% C	оиск	☆自	÷	⋒	🐠 🔍	⊒^
PLANAR ITM-20T2	Анализато	рТВ сигна	алов с уд	цален	ны	мд	осту	пом
<u>Главная</u>	<u>Измерения</u>	<u>Настройки</u>	<u>Обновлени</u>	<u>e</u>	Eng	g	Rus	
Настройки автом	атического обнов	ления						
Период автоматическог	го обновления, дней:0	(от 0 до 365)						
Если "0" автоматическо	ое обновление отключе	HO.						
Сохранить								
Обновление поль	зователем							
Обновить сейчас								
Перезагрузка при	бора							
Для перезагрузки прибора нажмите "Перезагрузка".								
После перезагрузки пр	ибор некоторое время	будет недоступен.						
Перезагрузка								.::

Рисунок 7 – Вкладка Обновление

11.2 Обновление ПО пользователем

Для обновления ПО анализатора по команде пользователя нажмите кнопку **Обновить сейчас** (см. рисунок 7).

Анализатор перейдет в режим обновления ПО и в web-браузере отобразится web-страница обновления (см. рисунок 8).

ITM-20T2 × +	_	
(192.168.1.10/index.html 90% C	»	₽
ITM-20T2 Bootloader		
Device Info		
 Serial Number: PSW211000020 Hardware Version: 2.21.2 Firmware Version: 01.01.00.04 Build 210716 Bootloader Version: 01.00.02.00 Build 000000 		
Manual Firmware Update		
Select *.bsk2 firmware file and click "Update"		
Обзор Файл не выбран.		
Update		
Exit from Bootloader		

Рисунок 8

Нажмите кнопку Обзор и выберите файл обновления.

Файл обновления можно скачать с сайта предприятия-изготовителя со ПРИМЕЧАНИЕ страницы описания анализатора ITM-20T2. Файл обновления имеет расширение .bsk2.

Для обновления анализатора нажмите кнопку **Update** (см. рисунок 8). При ошибке обновления в браузере отобразится страница с описанием ошибки. При успешном обновлении- отобразится web-страница, показанная на рисунке 9.

После обновления перейдите по ссылке System page на главную web-страницу анализатора.

Рисунок 9

11.3 Принудительный вход в режим обновления ПО

В случае если по какой-либо причине анализатор не переходит в режим обновления ПО, возможен принудительный вход в режим обновления.

Для принудительного входа в режим обновления ПО выключите анализатор, нажмите и удерживайте кнопку «СБРОС» (см. рисунок 2). Включите анализатор. Отпустите кнопку «СБРОС». Анализатор перейдет в режим обновления ПО (см. рисунок 8).

Далее произведите обновление анализатора по п. 11.2.

12 Работа с анализатором в программе ViewRSA

12.1 Общие указания

Программа ViewRSA предназначена для работы с анализатором по ЛВС и обладает следующими функциями:

- редактирование ТВ системы прибора;
- редактирование канального плана;

- редактирование лимитного плана;
- считывание результатов измерения и сохранение их в базе данных;
- просмотр истории измерений в табличном и графическом виде;

• автоматическая проверка параметров каналов в соответствии с лимитным планом, сохранение обнаруженных ошибок в базе данных и их просмотр;

- просмотр идентификационных данных анализатора;
- просмотр диагностических данных анализатора.

В настоящем руководстве изложен только порядок установки программы ViewRSA. Более подробную информацию о работе с программой можно найти в руководстве пользователя ViewRSA или во встроенной в программу справке.

12.2 Установка программного обеспечения

Вся необходимая информация о требованиях, предъявляемых к ПК для работы с ПО ViewRSA, а также о последовательности установки ПО приведена в текстовом файле «readme_ru.txt», распространяемом вместе с программой ViewRSA.

13 Работа с анализатором по SNMP протоколу

13.1 Общие указания

Анализатор поддерживает протокол обмена SNMPv1, что позволяет ему работать с системами мониторинга, работающими по этому протоколу. Подключение анализатора к системе мониторинга производится следующим образом:

• подключите к системе мониторинга МІВ-файл анализатора. Файл можно скачать с сайта <u>www.planarchel.ru</u> со страницы анализатора ITM-20T2;

• добавьте анализатор в систему мониторинга. При этом необходимо указать следующие параметры SNMP протокола:

- протокол обмена: SNMPv1;
- порт SNMP протокола: 161;
- порт для приема уведомлений: 162;
- пароль для чтения: public;
- пароль для записи: public;

• протестируйте работу анализатора путем чтения одного из стандартных объектов МІВ-2 иерархии;

• настройте IP-адреса получателей уведомлений;

• перезапустите анализатора и убедитесь в получении системой мониторинга уведомления «Coldstart».

13.2 Описание анализатора в иерархии MIB-2

Объект анализатора имеет идентификатор 1.3.6.1.4.1.32108.2.5 и позволяет производить следующие действия:

• просматривать идентификационные данные: серийный номер, аппаратную модификацию и версию программного обеспечения;

• устанавливать и просматривать имя контролируемого узла сети;

• управлять процессом измерения: изменять период измерения и останавливать/запускать измерение;

• устанавливать и просматривать дату и время анализатора;

• перезапускать анализатор;

- задавать IP-адреса получателей уведомлений (до 3-х адресов);
- просматривать и изменять канальный план: имя канала, частоту и тип канала;
- просматривать и изменять лимитный план;

• просматривать результаты измерений по каждому каналу: уровень канала, V/A, C/N, MER, BER до и после декодера Рида-Соломона;

- просматривать результаты проверки измерений по лимитному плану;
- проверять текущую температуру анализатора;

• получать уведомления от анализатора со следующей информацией: аппаратные и программные ошибки, выход температуры за допустимые пределы, результаты измерения каналов, не прошедших проверку по установленному лимитному плану.

Перечень всех объектов МІВ-иерархии анализатора с подробной информацией приведен в приложении А.

14 Маркировка

Маркировка анализатора выполнена в соответствии с ГОСТ 22261-94.

Заводской серийный номер, который содержит порядковый номер и код даты выпуска, а также MAC-адрес, нанесены на переднюю панель анализатора и отображаются на webстранице **Информация о приборе** (рисунок 2), в программе ViewRSA, а также в объекте SerialNumber при работе по SNMPv1 (приложение A).

15 Техническое обслуживание

Техническое обслуживание анализатора сводится к соблюдению правил эксплуатации, хранения, транспортирования, изложенных в данном руководстве.

После окончания гарантийного срока и далее один раз в год проводится контрольнопрофилактический осмотр, при котором проверяется надежность крепления анализатора на DIN-рейку и надежность подключения питания, входного сигнала, сети ЛВС, охранного шлейфа к анализатору.

16 Обнаружение неисправностей и текущий ремонт

При обнаружении неисправностей анализатора следует провести диагностику и устранить неисправность согласно приложению Б. В случае если неисправность устранить не удалось, прекратите эксплуатацию анализатора и обратитесь на предприятие-изготовитель.

Ремонт анализатора должен производиться на предприятии-изготовителе, либо сервисных центрах, имеющих аккредитацию.

17 Хранение

Анализатор должен храниться в транспортной упаковке в складских помещения, защищенных от воздействия атмосферных осадков, при отсутствии в воздухе паров кислот, щелочей и других агрессивных примесей.

Условия хранения:

- температура окружающей среды от минус 20 до плюс 40 °С;
- относительная влажность до 90 % (при температуре 30 °C).

18 Транспортирование

Анализаторы должны транспортироваться в закрытых транспортных средствах любого вида при температуре от минус 20 до плюс 40 °C, влажности 90% (при температуре 30 °C) и атмосферном давлении от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.).

Приложение А (обязательное) Описание MIB-2 иерархии

Группа объектов «identification»

Название:	Серийный номер анализатора
Vaon:	sorialNumber (1.2, 6.1, 4.1, 22108, 2.5, 1.1, 0)
y 36/1.	Senainumber (1.3.0.1.4.1.32108.2.3.1.1.0)
Парамотры	DisplayString Topuyo UTOUNO
параметры.	ызраузстив, только чтение
Описание.	узел позволяет считывать серииный номер анализатора.

Название:	Аппаратная модификация анализатора
Узел:	hardVersion (1.3.6.1.4.1.32108.2.5.1.2.0)
Параметры:	DisplayString, только чтение
Описание:	Узел позволяет считывать номер аппаратной модификации анализатора.

Название:	Версия программного обеспечения анализатора
Узел:	softVersion (1.3.6.1.4.1.32108.2.5.1.3.0)
Параметры:	DisplayString, только чтение
Описание:	Узел позволяет считывать номер версии программного обеспечения
	анализатора.

Название:	Название контролируемого анализатором узла распределительной сети.
Узел:	testPointName (1.3.6.1.4.1.32108.2.5.1.4.0)
Параметры:	DisplayString (0255), чтение и запись
Описание:	Узел позволяет устанавливать и считывать название контролируемого
	анализатором узла распределительной сети телевизионного вещания.

Группа объектов «control»

Название:	Период измерения каналов
Узел:	measurementPeriod (1.3.6.1.4.1.32108.2.5.2.1.0)
Параметры:	Integer32 (060, 255), чтение и запись
Описание:	Узел позволяет устанавливать период измерения каналов. Значение «О»
	используется для установки однократного измерения. Значение «255» -
	установка непрерывного измерения.

Название:	Запуск и остановка измерения
Узел:	measurementLaunch (1.3.6.1.4.1.32108.2.5.2.2.0)
Параметры:	INTEGER (stop(0), start(1)), чтение и запись
Описание:	Узел позволяет запускать (значение «1») и останавливать (значение «0»)
	измерение каналов.

Название:	Текущее время анализатора
Узел:	timeUTC (1.3.6.1.4.1.32108.2.5.2.3.0)
Параметры:	DisplayString, чтение и запись
Описание:	Узел позволяет считывать и устанавливать текущее время анализатора.
	Время устанавливается в формате «НН:ММ:SS», где НН – часы (023), ММ –
	минуты (059), SS – секунды (059).
	ВНИМАНИЕ! Время устанавливается в формате UTC по Гринвичу.

Название:	Текущая дата анализатора
Узел:	dateUTC (1.3.6.1.4.1.32108.2.5.2.4.0)
Параметры:	DisplayString, чтение и запись
Описание:	Узел позволяет считывать и устанавливать текущую дату анализатора. Дата устанавливается в формате «DD.MM.YYYY», где DD – день (131), MM –
	месяц (112), ҮҮҮҮ – год (>2000).

Название:	Перезапуск анализатора
Узел:	unitRestart (1.3.6.1.4.1.32108.2.5.2.5.0)
Параметры:	INTEGER (1), чтение и запись
Описание:	Узел позволяет перезапускать анализатор путем установки значения «1».
	Эта функция может быть полезна в случае появления каких-либо неполадок
	в работе анализатора.

Название:	Первый получатель уведомлений анализатора
Узел:	trapDestination1 (1.3.6.1.4.1.32108.2.5.2.6.0)
Параметры:	DisplayString, чтение и запись
Описание:	Узел позволяет устанавливать и считывать IP-адрес первого получателя
	уведомлений анализатора. Для отключения получателя уведомлений
	необходимо установить значение IP-адреса «0.0.0.0».

Название:	Второй получатель уведомлений анализатора
Узел:	trapDestination2 (1.3.6.1.4.1.32108.2.5.2.7.0)
Параметры:	DisplayString, чтение и запись
Описание:	Узел позволяет устанавливать и считывать IP-адрес второго получателя
	уведомлений анализатора. Для отключения получателя уведомлений
	необходимо установить значение IP-адреса «0.0.0.0».

Название:	Третий получатель уведомлений анализатора
Узел:	trapDestination3 (1.3.6.1.4.1.32108.2.5.2.8.0)
Параметры:	DisplayString, чтение и запись
Описание:	Узел позволяет устанавливать и считывать IP-адрес третьего получателя
	уведомлений анализатора. Для отключения получателя уведомлений
	необходимо установить значение IP-адреса «0.0.0.0».

Название:	Разрешение или запрет редактирования параметров измерения		
Узел:	measParamEditMode (1.3.6.1.4.1.32108.2.5.2.9.0)		
Параметры:	INTEGER (disable(0), enable(1)), чтение и запись		
Описание:	Узел разрешает или запрещает редактирование параметров измерения		
	(канального плана, лимитного плана).		
	Для записи нового канального или лимитного плана установить переменной		
	measParamEditMode значение enable(1). После записи или редактирования		
	необходимо установить переменной measParamEditMode значение		
	disable(0).		

Название:	Запись ячейки канального плана		
Узел:	chPlanPointEdit (1.3.6.1.4.1.32108.2.5.2.10.0)		
Параметры:	DisplayString (2040), чтение и запись		
Описание:	Узел позволяет записывать канал нового канального плана. Канал		
	записывается в формате «nnnnn.fffffff.S.b.mm.ssss», где:		
	 nnnnn – имя канала (не более 6 символов); 		
	 fffffff – частота в кГц (450001000000 с дискретностью 125 кГц); 		
	 S – тип канала (0 – аналоговый, 1 – цифровой с неизвестной 		
	модуляцией, 2 – DVB-C(AnnexA), 3 – AnnexB, 4 – AnnexC);		
	• b— ширина канала (0— автоматически, 6— 6 МГц, 7— 7 МГц, 8— 8		
	МГц);		
	 mm – модуляция (0 – неизвестная, 11 – QAM64, 12 – QAM128, 13 – ОАМ25 с); 		
	• SSSS – символьная скорость (SOOO7000 кS/S, 0 – не определена).		
пример:	для записи нового канального плана необходимо установить переменной		
	переидет к записи нового канального плана.		
	Затем необходимо поочередно записать строки с описаниями каналов в переменную chPlanPointEdit.		
	• строка «сп_1,91750,0,0,0,0 » запишет аналотовый канал с частотой 91.750 МГц и цээрэциом «Ср. 1»:		
	91,750 № циназванием «СП_1», строиз «Сb. 8 194000 2.0.12 6900» задишот цифровой изцад DVB-		
	 Строка «сп_8,194000,2,0,13,0900» запишет цифровой канал DVB- С(АррехА) с цастотой 194 000 МЕц и названием «Ср. 8». Молулация 		
	 строка «Ch. 25 506000 1.8.0.0» запишет цифровой канал с 		
	неизвестной модудящией с частотой 506 000 МГц. шириной 8 МГц и		
	названием «Ch 25».		
	Для аналоговых каналов ширина канала, модуляция и символьная скорость		
	должны устанавливаться равными нулю.		
	Для цифровых каналов с неизвестной модуляцией ширина канала должна		
	быть 6, 7 или 8 МГц, а модуляция и символьная скорость должны		
	устанавливаться равными нулю.		
	Для цифровых каналов стандарта DVB-C/T/T2 ширина канала		
	устанавливается равной нулю. Модуляция и символьная скорость		
	устанавливаются не равными нулю.		

После записи	и всех каналов	необходимо	установить	переменной
measParamEdit	Mode значение	disable(0). Анал	изатор удали	іт из памяти
имеющийся ка	нальный план и з	апишет новый. Н	(аналы будут	размещены в
порядке возра	стания частоты.			

Название:	Максимальный уровень аналогового канала в лимитном плане	
Узел:	maxAnalogLevel (1.3.6.1.4.1.32108.2.5.2.11.0)	
Параметры:	Integer32 (4595 или 0), чтение и запись	
Описание:	Узел устанавливает максимальный уровень аналогового канала в лимитном	
	плане (дБ). 0 – проверка выключена.	
	Перед редактированием необходимо установить переменной	
	measParamEditMode значение enable(1). После редактирования необходимо	
	установить переменной measParamEditMode значение disable(0).	

Название:	Минимальный уровень аналогового канала в лимитном плане	
Узел:	minAnalogLevel (1.3.6.1.4.1.32108.2.5.2.12.0)	
Параметры:	Integer32 (4595 или 0), чтение и запись	
Описание:	Узел устанавливает минимальный уровень аналогового канала в лимитном	
	плане (дБ). 0 – проверка выключена.	
	Перед редактированием необходимо установить переменной	
	measParamEditMode значение enable(1). После редактирования необходимо	
	установить переменной measParamEditMode значение disable(0).	

Название:	Максимальный уровень цифрового канала в лимитном плане	
Узел:	maxDigitalLevel (1.3.6.1.4.1.32108.2.5.2.13.0)	
Параметры:	Integer32 (4595 или 0), чтение и запись	
Описание:	Узел устанавливает максимальный уровень цифрового канала в лимитном	
	плане (дБ). 0 – проверка выключена.	
	Перед редактированием необходимо установить переменной	
	measParamEditMode значение enable(1). После редактирования необходимо	
	установить переменной measParamEditMode значение disable(0).	

Название:	Минимальный уровень цифрового канала в лимитном плане	
Узел:	minDigitalLevel (1.3.6.1.4.1.32108.2.5.2.14.0)	
Параметры:	Integer32 (4595 или 0), чтение и запись	
Описание:	Узел устанавливает минимальный уровень цифрового канала в лимитном	
	плане (дБ). 0 – проверка выключена.	
	Перед редактированием необходимо установить переменной	
	measParamEditMode значение enable(1). После редактирования необходимо	
	установить переменной measParamEditMode значение disable(0).	

Название:	Минимальный MER цифрового канала с модуляцией QAM64 в лимитном	
	плане	
Узел:	minMerQAM64 (1.3.6.1.4.1.32108.2.5.2.15.0)	
Параметры:	Integer32 (2540 или 0), чтение и запись	
Описание:	Узел устанавливает минимальный MER цифрового канала с модуляцией	
	QAM64 в лимитном плане (дБ). 0 — проверка выключена.	
	Перед редактированием необходимо установить переменной	
	measParamEditMode значение enable(1). После редактирования необходимо	
	установить переменной measParamEditMode значение disable(0).	

Название:	Минимальный MER цифрового канала с модуляцией QAM128 в лимитном					
	плане					
Узел:	minMerQAM128 (1.3.6.1.4.1.32108.2.5.2.16.0)					
Параметры:	Integer32 (2540 или 0), чтение и запись					
Описание:	Узел устанавливает минимальный MER цифрового канала с модуляцией					
	QAM128 в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальный MER цифрового канала с модуляцией QAM256 в лимитном					
	плане					
Узел:	minMerQAM256 (1.3.6.1.4.1.32108.2.5.2.17.0)					
Параметры:	Integer32 (2540 или 0), чтение и запись					
Описание:	Узел устанавливает минимальный MER цифрового канала с модуляцией					
	QAM256 в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Максимальный PreBER цифрового канала в лимитном плане					
Узел:	maxPreBER (1.3.6.1.4.1.32108.2.5.2.18.0)					
Параметры:	Integer32 (05), чтение и запись					
Описание:	Узел устанавливает максимальный PreBER цифрового канала в лимитном					
	плане: 1 – 1е-4, 2 – 1е-5, 3 – 1е-6, 4 – 1е-7, 5 – 1е-8, 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальная неравномерность уровней смежных каналов в лимитном					
	плане					
Узел:	maxDeltaAdj (1.3.6.1.4.1.32108.2.5.2.19.0)					
Параметры:	Integer32 (26 или 0), чтение и запись					
Описание:	Узел устанавливает минимальную неравномерность уровней смежных					
	каналов в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальная неравномерность уровней аналоговых и цифровых каналов в					
	лимитном плане					
Узел:	maxDeltaDA (1.3.6.1.4.1.32108.2.5.2.20.0)					
Параметры:	Integer32 (530 или 0), чтение и запись					
Описание:	Узел устанавливает минимальную неравномерность уровней аналоговых и					
	цифровых каналов в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальная неравномерность уровней каналов в диапазоне от 40 до 300					
	МГц в лимитном плане					
Узел:	maxDelta300 (1.3.6.1.4.1.32108.2.5.2.21.0)					
Параметры:	Integer32 (515 или 0), чтение и запись					
Описание:	Узел устанавливает минимальную неравномерность уровней каналов в					
	диапазоне 40300 МГц в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальная неравномерность уровней каналов в диапазоне от 40 до 600					
	МГц в лимитном плане					
Узел:	maxDelta600 (1.3.6.1.4.1.32108.2.5.2.22.0)					
Параметры:	Integer32 (717 или 0), чтение и запись					
Описание:	Узел устанавливает минимальную неравномерность уровней каналов в					
	диапазоне 40600 МГц в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальная неравномерность уровней каналов в диапазоне от 40 до 1000				
	МГц в лимитном плане				
Узел:	maxDelta1000 (1.3.6.1.4.1.32108.2.5.2.23.0)				
Параметры:	Integer32 (1020 или 0), чтение и запись				
Описание:	Узел устанавливает минимальную неравномерность уровней каналов в				
	диапазоне 401000 МГц в лимитном плане (дБ). 0 – проверка выключена.				
	Перед редактированием необходимо установить переменной				
	measParamEditMode значение enable(1). После редактирования необходимо				
	установить переменной measParamEditMode значение disable(0).				

Название:	Минимальная неравномерность уровней каналов в полосе 100 МГц в					
	лимитном плане					
Узел:	maxDeltaR100 (1.3.6.1.4.1.32108.2.5.2.24.0)					
Параметры:	Integer32 (515 или 0), чтение и запись					
Описание:	Узел устанавливает минимальную неравномерность уровней каналов в					
	полосе 100 МГц в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальная неравномерность уровней каналов в полосе 100 МГц в					
	лимитном плане					
Узел:	maxDeltaR100 (1.3.6.1.4.1.32108.2.5.2.24.0)					
Параметры:	Integer32 (515 или 0), чтение и запись					
Описание:	Узел устанавливает минимальную неравномерность уровней каналов в					
	полосе 100 МГц в лимитном плане (дБ). 0 – проверка выключена.					
	Перед редактированием необходимо установить переменной					
	measParamEditMode значение enable(1). После редактирования необходимо					
	установить переменной measParamEditMode значение disable(0).					

Название:	Минимальная входная оптическая мощность						
Узел:	minOpticalInputPower (1.3.6.1.4.1.32108.2.5.2.25.0)						
Параметры:	Integer32 (-10040 или -400), чтение и запись						
Описание:	Узел устанавливает минимальную входную оптическую мощность (дБ*10).						
	-400 — проверка выключена.						
	Перед редактированием необходимо установить переменной						
	measParamEditMode значение enable(1). После редактирования необходимо						
	установить переменной measParamEditMode значение disable(0).						

Название:	Максимальная входная оптическая мощность						
Узел:	maxOpticalInputPower (1.3.6.1.4.1.32108.2.5.2.26.0)						
Параметры:	Integer32 (-10040 или -400), чтение и запись						
Описание:	Узел устанавливает максимальную входную оптическую мощность (дБ*10).						
	-400 — проверка выключена.						
Перед редактированием необходимо установить пе							
	measParamEditMode значение enable(1). После редактирования необходимо						
	установить переменной measParamEditMode значение disable(0).						

Группа объектов «measurements»

Название:	Число каналов канального плана
Узел:	channelsNumber (1.3.6.1.4.1.32108.2.5.3.1.0)
Параметры:	Integer32, только чтение
Описание:	Узел позволяет считывать число каналов канального плана.

Таблица канального плана

Название:	Номер канала канального плана
Узел:	chIndex (1.3.6.1.4.1.32108.2.5.3.2.1.1)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать номер любого из каналов канального плана.

Название:	Имя канала канального плана
Узел:	chName (1.3.6.1.4.1.32108.2.5.3.2.1.2)
Параметры:	DisplayString, только чтение, список
Описание:	Узел позволяет считывать имя любого из каналов канального плана.
Пример:	chName.1 → «s23 ch».
	Имя первого канала канального плана «s23 ch».

Название:	Частота канала канального плана
Узел:	chFrequency (1.3.6.1.4.1.32108.2.5.3.2.1.3)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать частоту любого из каналов канального плана в
	кГц.
Пример:	chFrequency.2 \rightarrow «471250».
	Частота второго канала канального плана 471.250 МГц.

Название:	Тип канала канального плана
Узел:	chType (1.3.6.1.4.1.32108.2.5.3.2.1.4)
Параметры:	INTEGER (analog(0), digitalUnknown(1), annexA(2), annexB(3), annexC(4)),
	только чтение, список
Описание:	Узел позволяет считывать тип любого из каналов канального плана.
Пример:	chType.2 \rightarrow «0».
	Второй канал канального плана является аналоговым.

Название:	Ширина канала канального плана
Узел:	chBandWidth (1.3.6.1.4.1.32108.2.5.3.2.1.5)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать ширину любого из каналов канального плана в
	кГц.
Пример:	chBandWidth.3 \rightarrow «8000».
	Ширина третьего канала канального плана 8 МГц.

Название:	Модуляция канала канального плана
Узел:	chModulation (1.3.6.1.4.1.32108.2.5.3.2.1.6)
Параметры:	INTEGER (unknown(0), qam64(11), qam128(12), qam256(13)), только чтение,
	список
Описание:	Узел позволяет считывать модуляцию любого из каналов канального плана.
Пример:	chModulation.2 \rightarrow «13».
	Модуляция второго канал канального плана QAM256.

Название:	Символьная скорость канала канального плана
Узел:	chSymbolRate (1.3.6.1.4.1.32108.2.5.3.2.1.7)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать символьную скорость любого из каналов
	канального плана в kS/s.
Пример:	chSymbolRate.3 \rightarrow «6900».
	Символьная скорость третьего канала канального плана 6.9 MS/s.

Таблица результатов измерения

Название:	Номер канала в канальном плане
Узел:	measChIndex (1.3.6.1.4.1.32108.2.5.3.3.1.1)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать номер канала в канальном плане.

Название:	Уровень канала
Узел:	level (1.3.6.1.4.1.32108.2.5.3.3.1.2)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать уровень напряжения радиосигнала аналогового
	канала и уровень фактической мощности цифрового канала. Значение
	кодируется в формате (дБмкВ * 10).
Пример:	Level.2 \rightarrow «657».
	Значение уровня второго канала 65.7 дБмкВ.

Название:	Отношение видео/аудио аналогового канала
Узел:	var (1.3.6.1.4.1.32108.2.5.3.3.1.3)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать значение отношения видео/аудио. Значение
	кодируется в формате (дБ * 10). Для цифровых каналов всегда
	устанавливается значение «О».
Пример:	var.2 \rightarrow «107».
	Значение отношения видео/аудио второго канала 10.7 дБ.

Название:	Отношение сигнал/шум аналогового канала
Узел:	cnr (1.3.6.1.4.1.32108.2.5.3.3.1.4)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать отношения сигнал/шум. Значение кодируется в
	формате (дБ * 10). Для цифровых каналов всегда устанавливается значение
	«0».
Пример:	cnr.2 → «485».
	Значение отношения сигнал/шум второго канала 48.5 дБ.

Название:	MER цифрового канала
Узел:	mer (1.3.6.1.4.1.32108.2.5.3.3.1.5)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать значение MER цифрового канала. Значение
	кодируется в формате (дБ * 10). В случае если не удалось
	синхронизироваться с каналом, то устанавливается значение «О». Для
	аналоговых каналов всегда устанавливается значение «0».
Пример:	mer.3 → «322».
	Значение MER третьего канала 32.2 дБ.

Название:	Частота появления ошибочных битов до декодера Рида-Соломона
Узел:	preBER (1.3.6.1.4.1.32108.2.5.3.3.1.6)
Параметры:	Counter32, только чтение, список
Описание:	Узел позволяет считывать значение preBER цифрового канала. Значение
	кодируется как (preBER * 10^10). В случае если не удалось
	синхронизироваться с каналом, то устанавливается значение «2^32-1». Для
	аналоговых каналов всегда устанавливается значение «0».
Пример:	preBER.3 \rightarrow «11».
	Значение preBER третьего канала 1.1Е-9.

Название:	Частота появления ошибочных битов после декодера Рида-Соломона
Узел:	postBER (1.3.6.1.4.1.32108.2.5.3.3.1.7)
Параметры:	Counter32, только чтение, список
Описание:	Узел позволяет считывать значение postBER цифрового канала. Значение
	кодируется как (postBER * 10^10). В случае если не удалось
	синхронизироваться с каналом, то устанавливается значение «2^32-1». Для
	аналоговых каналов всегда устанавливается значение «0».
Пример:	postBER.3 \rightarrow «5000».
	Значение postBER третьего канала 5.0Е-7.

Таблица результатов проверки каналов по лимитному плану

Название:	Номер канала в канальном плане
Узел:	errChIndex (1.3.6.1.4.1.32108.2.5.3.4.1.1)
Параметры:	Integer32, только чтение, список
Описание:	Узел позволяет считывать номер канала в канальном плане.

Название:	Флаг ошибочности канала
Узел:	alert (1.3.6.1.4.1.32108.2.5.3.4.1.2)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет проверить, прошел ли канал проверку по лимитному плану.
	В случае, если установлено значение «1», то канал не прошел проверку по
	одному или нескольким критериям.
Пример:	$CNR.2 \rightarrow \ll 1$ ».
	Второй канал не прошел проверку по одному или нескольким критериям.

Название:	Флаг низкого уровня канала
Узел:	lowLevel (1.3.6.1.4.1.32108.2.5.3.4.1.3)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критериям:
	минимальный допустимый уровень напряжения радиосигнала аналогового
	канала и минимальный допустимый уровень фактической мощности
	цифрового канала.

Название:	Флаг высокого уровня канала
Узел:	highLevel (1.3.6.1.4.1.32108.2.5.3.4.1.4)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критериям:
	максимальный допустимый уровень напряжения радиосигнала аналогового
	канала и максимальный допустимый уровень фактической мощности
	цифрового канала.

Название:	Флаг низкого значения отношения видео/аудио
Узел:	lowVAR (1.3.6.1.4.1.32108.2.5.3.4.1.5)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	минимальное допустимое значение отношения видео/аудио аналогового
	канала.

Название:	Флаг высокого значения отношения видео/аудио
Узел:	highVAR (1.3.6.1.4.1.32108.2.5.3.4.1.6)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение отношения видео/аудио аналогового
	канала.

Название:	Флаг низкого значения отношения сигнал/шум
Узел:	lowCNR (1.3.6.1.4.1.32108.2.5.3.4.1.7)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	минимальное допустимое значение отношения сигнал/шум аналогового
	канала.

Название:	Флаг низкого значения MER
Узел:	lowMER (1.3.6.1.4.1.32108.2.5.3.4.1.8)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	минимальное допустимое значение MER цифрового канала.

Название:	Флаг высокого значение preBER
Узел:	highPreBER (1.3.6.1.4.1.32108.2.5.3.4.1.9)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение BER до декодера Рида-Соломона
	цифрового канала.

Название:	Флаг высокого значение postBER
Узел:	highPostBER (1.3.6.1.4.1.32108.2.5.3.4.1.10)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение BER после декодера Рида-Соломона
	цифрового канала.

Название:	Флаг высокого значение неравномерности смежных каналов
Узел:	highDlAdjacent (1.3.6.1.4.1.32108.2.5.3.4.1.11)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение неравномерности смежных каналов.

Название:	Флаг высокого значение неравномерности каналов в полосе частот от 40 до
	300 МГц.
Узел:	highDl40300MHz (1.3.6.1.4.1.32108.2.5.3.4.1.12)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение неравномерности каналов в полосе
	частот от 40 до 300 МГц (п. 4.4.4.6).

Название:	Флаг высокого значение неравномерности каналов в полосе частот от 40 до
	600 МГц.
Узел:	highDl40600MHz (1.3.6.1.4.1.32108.2.5.3.4.1.13)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение неравномерности каналов в полосе
	частот от 40 до 600 МГц.

Название:	Флаг высокого значение неравномерности каналов в полосе частот от 40 до
	1000 МГц.
Узел:	highDl401000MHz (1.3.6.1.4.1.32108.2.5.3.4.1.14)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение неравномерности каналов в полосе
	частот от 40 до 1000 МГц.

Название:	Флаг высокого значение неравномерности уровня каналов в любом
	диапазоне частот шириной 100 МГц.
Узел:	highDldF100MHz (1.3.6.1.4.1.32108.2.5.3.4.1.15)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение неравномерности уровня каналов в
	любом диапазоне частот шириной 100 МГц.

Название:	Флаг высокого значение неравномерности уровня между цифровыми и
	аналоговыми каналами.
Узел:	highDlAnDg (1.3.6.1.4.1.32108.2.5.3.4.1.16)
Параметры:	INTEGER(true(1), false(0)), только чтение, список
Описание:	Узел позволяет просматривать результат проверки каналов по критерию:
	максимальное допустимое значение неравномерности уровня между
	аналоговыми и цифровыми каналами.

Название:	Число произведенных измерений
Узел:	measurementsCounter (1.3.6.1.4.1.32108.2.5.3.5.0)
Параметры:	Counter32, только чтение
Описание:	Узел позволяет считывать число произведенных измерений. Одному
	измерению соответствует измерение всех каналов канального плана.

Название:	Температура анализатора
Узел:	temperature (1.3.6.1.4.1.32108.2.5.3.6.0)
Параметры:	Integer32, только чтение
Описание:	Узел позволяет считывать значение текущей температуры анализатора в
	градусах Цельсия.

Уведомления

Название:	Ошибка калибровки анализатора
Узел:	tCalibrationError (1.3.6.1.4.1.32108.2.5.4)
Номер	1
уведомления:	
Доп. узлы	-
Описание:	Уведомление посылается в случае появления ошибки калибровки
	анализатора (как правило, сразу после включения анализатора). Это
	может привести к появлению дополнительной погрешности измерения
	параметров каналов.

Название:	Аппаратная ошибка анализатора
Узел:	tHardwareError (1.3.6.1.4.1.32108.2.5.4.2)
Номер	1
уведомления:	
Доп. узлы	InfoHardware
Описание:	Уведомление посылается в случае появление аппаратной ошибки
	анализатора, а также при восстановлении работоспособности
	анализатора. В узле InfoHardware содержится информация об аппаратной
	ошибке.
Пример:	Уведомление tHardwareError (ошибка тюнера):
	InfoHardware \rightarrow «tuner»
	Уведомление tHardwareError (восстановление работоспособности):
	InfoHardware \rightarrow «Ok»

Название:	Ошибка температуры анализатора
Узел:	tTemperatureSeverity (1.3.6.1.4.1.32108.2.5.4.4)
Номер	1
уведомления:	
Доп. узлы	Temperature, InfoTemperature
Описание:	Уведомление посылается в случае выхода температуры анализатора за
	пределы диапазона от минус 10 до плюс 80 °C, а также после
	возвращения температуры анализатора в допустимый диапазон. Выход
	температуры за допустимые пределы может привести к повышенной
	погрешности измерения уровня. В узле Temperature возвращается
	текущее значение температуры, а в узле InfoTemperature информация об
	ошибке.
Пример:	Уведомление tTemperatureSeverity (выход температуры за допустимые
	пределы):
	Temperature \rightarrow «85»
	InfoTemperature → «out of range!»
	Уведомление tTemperatureSeverity (возвращение температуры в
	допустимые пределы):
	Temperature \rightarrow «48»
	InfoTemperature → «Ok»

Название:	Ошибка проверки канала по лимитному плану
Узел:	tChannelSeverity (1.3.6.1.4.1.32108.2.5.4.5)
Номер	1
Уведомления:	
Доп. узлы	testPointName, chIndex, chName, chFrequency, chType, levelSeverite,
	varSeverity, cnrSeverity, merSeverity, preBERseverity, postBERseverity
Описание:	Уведомление посылается в случае, если канал не прошел проверку хотя
	бы по одному из критериев лимитного плана. В уведомлении содержится
	следующая информация:
	testPointName – имя контролируемого узла распределительной сети
	chIndex – номер ошибочного канала из канального плана
	chName – имя ошибочного канала
	chFrequency – частота ошибочного канала
	chType – тип ошибочного канала
	levelSeverite – информация об ошибке уровня канала
	varSeverity – информация об ошибке отношения видео/аудио канала

	cnrSeverity – информация об ошибке отношения сигнал/шум канала		
	merSeverity – информация об ошибке MER канала		
	preBERseverity – информация об ошибке preBER канала		
	postBERseverity – информация об ошибке postBER канала		
Пример:	Уведомление tChannelSeverity (произошло падение уровня канала):		
	testPointName $ ightarrow$ «main headend»		
	chIndex \rightarrow «2»		
	chName \rightarrow «MTV»		
	chFrequency \rightarrow «191250»		
	chType → «0»		
	levelSeverite → «49.2 (<50)»		
	varSeverity \rightarrow «»		
	cnrSeverity \rightarrow «»		
	merSeverity \rightarrow «»		
	preBERseverity \rightarrow «»		
	postBERseverity \rightarrow «»		
	Уведомление tChannelSeverity (уровень канала восстановился):		
	Те же значения узлов, кроме узла levelSeverite:		
	levelSeverite \rightarrow «Ok»		

Название:	Ошибка проверки канала по лимитному плану (проверка			
	неравномерности уровней)			
Узел:	tFlatnessSeverity (1.3.6.1.4.1.32108.2.5.4.6)			
Номер	1			
уведомления:				
Доп. узлы	testPointName, chIndex1, chName1, chFrequency1, chType1, chIndex2,			
	chName2, chFrequency2, chType2, severityType, severityValue			
Описание:	Уведомление посылается в случае, если пара каналов не прошла			
	проверку по одному из критериев. В уведомлении содержится			
	следующая информация:			
	testPointName – имя контролируемого узла распределительной сети			
	chIndex1 – номер первого ошибочного канала из канального плана			
	chName1 – имя первого ошибочного канала			
	chFrequency1 – частота первого ошибочного канала			
	chType1 – тип первого ошибочного канала			
	chIndex2 – номер второго ошибочного канала из канального плана			
	chName2 – имя второго ошибочного канала			
	chFrequency2 – частота второго ошибочного канала			

	chType2 – тип второго ошибочного канала
	severityType – тип ошибки. Одно из значений:
	«dL(40-300MHz)» - высокая неравномерность каналов, лежащих в
	диапазоне частот от 40 до 300 МГц.
	«dL(40-600MHz)» - высокая неравномерность каналов, лежащих в
	диапазоне частот от 40 до 600 МГц.
	«dL(40-1000MHz)» - высокая неравномерность каналов, лежащих в
	диапазоне частот от 40 до 1000 МГц.
	«dL(adjacent)» - высокая неравномерность смежных каналов.
	«dL(An/Dg)» - высокая неравномерность между аналоговым и цифровым
	каналом с минимальным/максимальным уровнем во всей сети.
	«dL(dF=100MHz)» - высокая неравномерность уровней каналов в любой
	полосе шириной 100 МГц во всей сети.
	severityValue – числовое значение ошибки
Пример:	Уведомление tFlatnessSeverity (появилась неравномерность смежных
	каналов):
	<code>testPointName</code> $ ightarrow$ «main headend»
	chIndex1 \rightarrow «2»
	chName1 \rightarrow «MTV»
	chFrequency1 → «191250»
	chType1 → «0»
	chIndex2 \rightarrow «3»
	chName2 \rightarrow «RTR»
	chFrequency2 → «199250»
	chType2 \rightarrow «0»
	severityType \rightarrow «dL(adjacent)»
	severityValue \rightarrow «6.3 (>5)»
	Уведомление tFlatnessSeverity (неравномерность смежных каналов
	пропала):
	Те же значения узлов, кроме SeverityValue:
	SeverityValue \rightarrow «Ok»

Название:	Неизвестная ошибка анализатора
Узел:	tUnrecognizedError (1.3.6.1.4.1.32108.2.5.4)
Номер	3
уведомления:	
Доп. узлы	-
Описание:	Уведомление посылается в случае появления ошибки, которая не может
	быть идентифицирована. В этом случае производится автоматический
	перезапуск анализатора.

Приложение Б (обязательное) Возможные неисправности и способы их устранения

Таблица Б.1

Неисправность	Возможная причина	Способы устранения
Анализатор не включается (при питании через РоЕ).	Исполнение анализатора не поддерживает питание через РоЕ (питание через РоЕ поддерживает исполнение ITM-20T2-R-POE).	Подать питание через разъем / клеммы внешнего источника питания.
	На сетевом оборудовании запрещена подача питания РоЕ.	Разрешить на сетевом оборудовании подачу питания РоЕ или подать питание через РоЕ — инжектор питания или подать питание через разъем / клеммы внешнего источника питания.
Анализатор включается, но не удается настроить	«Зависание» ПО анализатора.	Выключите анализатор, а затем заново включите его.
его с помощью ПК или подключить его к программе ViewRSA.	Сбой ПО анализатора.	Обновите ПО анализатора с помощью внешнего ПК (п. 11.2).

Неисправность	Возможная причина	Способы устранения
Сетевой интерфейс анализатора отвечает на тестовые запросы («пингуется») с удаленного ПК, однако	Сетевой порт, используемый программой ViewRSA, занят другой программой, установленной в ОС.	Задайте номер сетевого порта, который не используется ни одним приложением ОС.
не соединяется с программой ViewRSA.	Сетевой трафик программы ViewRSA блокируется межсетевым экраном, антивирусной программой или другими программными или аппаратными средствами.	Разрешите сетевой трафик в соответствии с выбранным режимом соединения с ViewRSA. Протестируйте соединение с помощью специальной утилиты CIUTestNet.exe, которая входит в состав программы ViewRSA.
	Анализатор работает с другим сервером ViewRSA.	Отключите анализатор от подключенного сервера ViewRSA, либо воспользуйтесь web- интерфейсом этого сервера для просмотра результатов работы анализатора.
Повышена погрешность при измерении уровня радиосигнала на всех или отдельных каналах.	Неправильная настройка канального плана, в результате чего при измерении анализатор настраивается со сдвигом по частоте.	Настройте канальный план с помощью программы ViewRSA или по протоколу SNMPv1.
	Неправильно установлен стандарт телевидения.	Проверьте параметры установленного в анализаторе стандарта телевидения с помощью программы ViewRSA.

Неисправность	Возможная причина	Способы устранения
Не удается перейти в режим обновления ПО.	Сбой ПО анализатора.	Необходимо принудительно обновить ПО анализатора (п. 11.3).